Search results for "Non-destructive test"
showing 10 items of 29 documents
Global-Local model for guided wave scattering problems with application to defect characterization in built-up composite structures
2020
Abstract Predicting scattering of elastic guided waves in multi-layered solid plates with geometrical and/or material discontinuities is of great interest to many fields, including ultrasonic-based Non-Destructive Testing (NDT) and health monitoring of critical structural components (SHM). The problem is complicated by the multimode and dispersive behaviour of the guided waves. This paper describes a unified Global-Local (GL) approach that is computationally efficient in cases that can be very complex in terms of geometry and/or material properties. One example of this is a composite built-up structure. The proposed GL procedure discretizes the “local” region with the scattering discontinui…
Multiscale microstructural characterization of particulate-reinforced composite with non-destructive X-ray micro- and nanotomography
2018
Abstract Methods based on X-ray tomography are developed to study the relevant statistical quantities describing the microstructural inhomogeneity of particulate reinforced composites. The developed methods are applied in estimating microstructural inhomogeneity parameters of composites containing metallic glass particles in metal matrix, extruded in varying pressure loads. This study indicates that the critical characteristics with regard to the effect of particle clustering are cluster size and shape, local volume fraction of particles in the cluster and the distance between clusters. The results demonstrate that the spatial distribution of reinforcement is very uneven and the amount of p…
Detection and characterisation of disbonds on Fibre Metal Laminate hybrid composites by flying laser spot thermography
2017
Abstract In this work a novel data collection and processing is proposed for the Infrared Non-Destructive Testing (IR-NDT) of interlaminar disbonds on Fibre Metal Laminate (FML) hybrid composites. The adopted active IR-NDT scheme uses a pointwise laser heat source that is moved along a raster scanning trajectory over the object surface. A Focal Plane Array IR camera is employed to acquire the thermal field generated by the moving heat source. Disbonds defect signatures are then searched by analysing the perturbations of the temperature distribution over a reference area following the heat source. The proposed methodology has been implemented on a GLARE sample, since this class of FMLs has g…
Autonomous ultrasonic inspection using Bayesian optimisation and robust outlier analysis
2020
The use of robotics is beginning to play a key role in automating the data collection process in Non Destructive Testing (NDT). Increasing the use of automation quickly leads to the gathering of large quantities of data, which makes it inefficient, perhaps even infeasible, for a human to parse the information contained in them. This paper presents a solution to this problem by making the process of NDT data acquisition an autonomous one as opposed to an automatic one. In order to achieve this, the robotic data acquisition task is treated as an optimisation problem, where one seeks to find locations with the highest indication of damage. The resulting algorithm combines damage detection tech…
Adhesive debonding detection of FRP reinforcement by the ultrasonic non-destructive technique
2015
Fiber reinforced polymer (FRP) composite systems are extensively used for repairing and reinforc- ing structurally inefficient concrete structures. The performance of an FRP rehabilitation system is highly influenced by its integrity. In particular, the presence of defects, e.g. voids, inclusions, debonds, improper cure and delaminations, caused by an inaccurately manufacture and installation, may affect the capability of the rehabilitated structure. For this reason, non-destructive (ND) meth- ods could be used to assess the quality of the reinforcement [1,2]. In this work an ultrasonic ND technique for detecting delamination defects in FRP reinforcement is presented. The technique couples …
Laser Ultrasonics Inspection for Defect Evaluation on Train Wheel
2019
Abstract Passengers’ safety and in-service life of wheelset axles play an important role in railway vehicles. For this reason, periodic inspections are necessary. Among non-destructive techniques, ultrasonic ones are widely applied in this field. The main disadvantage of conventional ultrasonic techniques is that the overall inspection of wheels requires the train to be put out-of-service and disassembly each part, which is time-consuming and expensive. In this paper, a non-conventional non-contact laser ultrasonic inspection for train wheels is proposed. The proposed method uses a laser interferometer to receive the ultrasonic wave without contact. The receiving system allows choosing the …
Robotic path planning for non-destructive testing of complex shaped surfaces
2015
The requirement to increase inspection speeds for non-destructive testing (NDT) of composite aerospace parts is common to many manufacturers. The prevalence of complex curved surfaces in the industry provides significant motivation for the use of 6 axis robots for deployment of NDT probes in these inspections. A new system for robot deployed ultrasonic inspection of composite aerospace components is presented. The key novelty of the approach is through the accommodation of flexible robotic trajectory planning, coordinated with the NDT data acquisition. Using a flexible approach in MATLAB, the authors have developed a high level custom toolbox that utilizes external control of an industrial …
FRP-Substrate bonding quality investigation making use of ultrasonic waves
2016
Fiber reinforced polymer (FRP) composite systems are widely used to repair structurally deficient constructions thanks to their good immunity to corrosion, low weight and excellent mechanical properties. The quality of the FRP-substrate interface bond is a crucial parameter affecting the performance of retrofitted structures. In this framework, ultrasonic testing could be used to assess the quality of the bonding [1-2]. In the case of FRP laminates adhesively bonded to roughly inhomogeneous materials, such as concrete, high scattering attenuation occurs due to the presence of heterogeneities. The concrete behaves almost like a perfect absorber generating a considerable number of short-space…
Influence of Welding Time on Tensile-Shear Strength of Linear Friction Welded Birch (Betula pendula L.) Wood
2015
Linear friction welding of wood is a bonding process applied to wood and during which a stiff bond line is formed by the softening and rehardening of wood components to form a composite material composed mainly of wood fibres embedded in a modified lignin matrix. Unfortunately, the bonds tend to spontaneously delaminate or lose their strength when exposed to moist conditions. Some approaches were previously applied to overcome this problem, but so far a suitable solution has not been found. This paper presents results of applying post-welding thermal modification to reduce the moisture sensitivity of welded wood. The experiments included welding of birch wood, thermal modification under sup…
Assessing the accuracy of industrial robots through metrology for the enhancement of automated non-destructive testing
2016
This work presents the study of the accuracy of an industrial robot KR5 arc HW, used to perform quality inspections of components with complex shapes. Metrology techniques such as laser tracking and large volume photogrammetry were deployed to quantify both pose and dynamic path accuracies of the robot in accordance with ISO 9283:1998. The overall positioning pose inaccuracy of the robot is found to be almost 1 mm and path inaccuracy at 100% of the robot rated velocity is 4.5 mm. The maximum pose orientation inaccuracy is found to be 14 degrees and the maximum path orientation inaccuracy is 5 degrees. Despite of the significant maximum inaccuracies, uncertainty of a robotic scanning applica…